Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges
نویسندگان
چکیده
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
منابع مشابه
Provision of Therapeutic Hypothermia in Neonatal Transport: A Longitudinal Study and Review of Literature
BACKGROUND Worldwide, a significant proportion of infants needing therapeutic hypothermia for hypoxia-ischaemia are transported to a higher-level facility for neonatal intensive care. They pose technical challenges to transport teams in cooling them. Concerns exist about the efficacy of passive cooling in neonatal transport to achieve a neurotherapeutic temprature. Servo-controlled cooling in t...
متن کاملInhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic‐ischaemic brain damage
Hypoxic-ischaemic encephalopathy is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy and cognitive disabilities. Hypoxia-ischaemia (HI) strongly up-regulates Signal Transducer and Activator of Transcription 3 (STAT3) in the immature brain. Our aim was to establish whether STAT3 up-regulation is associated with neonatal HI-brain damage and eva...
متن کاملMelatonin augments hypothermic neuroprotection in a perinatal asphyxia model.
Despite treatment with therapeutic hypothermia, almost 50% of infants with neonatal encephalopathy still have adverse outcomes. Additional treatments are required to maximize neuroprotection. Melatonin is a naturally occurring hormone involved in physiological processes that also has neuroprotective actions against hypoxic-ischaemic brain injury in animal models. The objective of this study was...
متن کاملMechanisms of hypothermia-induced cell protection in the brain
Therapeutic hypothermia is an effective cytoprotectant and promising intervention shown to improve outcome in patients following cardiac arrest and neonatal hypoxia-ischemia. However, despite our clinical and experimental experiences, the protective molecular mechanisms of therapeutic hypothermia remain to be elucidated. Therefore, in this brief overview we discuss both the clinical evidence an...
متن کاملUse of stem cells in perinatal asphyxia: from bench to bedside.
OBJECTIVES To present recent scientific evidence on the effects of stem cell transplantation in animal models of neonatal hypoxic-ischemic brain injury and address the translational relevance of cell therapy for clinical application in this context. SOURCES The PubMed and Scopus databases were used to select articles. The selection criterion was the specificity of articles regarding the subje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017